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Abstract

The purposes of the paper are to indicate the inadequacies in pre-

sent measurement models and to describe how tree theory, a theory-

generative model, overcomes these inadequacies. Among the weaknesses

cited in many measurement models are their untested assumptions of lin-

ear order and unidimensionality, and their inability to generate non-

associational relationships for a given set of empirical events.

Tree theory is a measurement model whose intent is the generation

and testing of specific logical relationships among empirical events.

Tree theory has as its basic mathematical framework free Boolean alge-

bra and employs the multinomial distribution as the basis for its sta-

tistical tests. The method of tree theory will be described in terms

of its Boolean algebraic and statistical procedures. Applications are

then cited for the fields of evaluation and developmental psychology.
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TREE THEORY: A THEORY-GENERATIVE MEASUREMENT MODEL

Peter W. Airasian William M. Bart
and

Boston College University of Minnesota

Measurement models in the behavioral sciences are marked by a series

of assumptions about the phenomena measured. The first section of this

paper identifies a number of these assumptions and indicates their impact

on measurement practices. The basic argument made is that the stronger a

measurement model is with respect to the assumptions it makes about the

traits measured, the less useful for theory generation the model is. The

second section of the paper introduces tree theory, a theory-generative

measurement model which makes few assumptions about the traits measured.

Tree theory is presented in an algebraic and statistical mode. Applica-

tions of the theory are cited.

Assumptions of Present Measurement Models

Linear Order Assumption

Most measurement models used in the behavioral sciences assume the

existence of a linear order in the trait being measured. For clarity, any

property, phenomenon, variable, or entity to be measured will be called a

trait. A trait may be further defined as a set of events or manifestations.

Any trait (say T) is linearly ordered if one can define a relation

(say R) on the trait with arbitrary constituent manifestations h, k, and
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1, with the following properties:

1. assymetric property: hRk implies kith, where means "not R";

2. transitive property: hRk and kRl implies hRl;

3. connected property: either hRk or kRh (Birkhoff & MacLane 1965).

Examples of linear ordering relations are "is prerequisite to," "is greater

than," and "is less than." Any trait on which an assymetric, transitive,

and connected relation can be defined is linearly ordered.

Measurement experts such as Brian Ellis (1968) contend that the exis-

tence of a quantity implies the existence of a linear order. In classical

test theory (Gulliksen, 1950) as well as strong latent trait test theory

(Lord and Novick, 1968), linearly ordered traits are assumed. The assump-

tion of.a linear ordering of the events comprising a trait is extremely

crucial, for it permits measurement to be defined as the assignment of num-

bers to events. This definition is basic to measurement theory (Campbell,

1928; Stevens, 1946).

A linear order among the events measured makes meaningful the numeri-

cal values assigned to the events. The quantification of events is not a

neutral procedure. For quantification to be meaningful, it is essential

that the relational system among the real numbers mirror the relational

system among the events of the trait measured. In the terms of Suppes and

Zinnes (1963), an isomorphism must exist between the numerical relational

system and the empirical relational system. If such an isomorphism does

not exist, then the use of linearly ordered numerals to depict unique

events on a non-linearly ordered set of events is inappropriate,

Recent evidence (Bart, 1970) indicates that it.is mathematically un-

reasonable to assume a linear order among a set of events.if the set num-

bers more than four. Instructional planners (Gagne, 1961; Resnick, 1967)

;r1
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and evaluators (Airasian, in press) have shown that the tasks involved in

learning many concepts, skills, etc., are frequently nonlinearly ordered.

Suppes and Unnes (1963) have discussed the existence of partial and pseudo

orders among classes of psychological phenomena. Thus, a linear order is

but one of many possible orders applicable to the description of psycho-

logical, traits.

Two consequences result from assuming a linear order in a trait when

such an order does not empirically exist. First, if a trait is not linearly

orderd, then not even an ordinal scale can be attributed to the trait. And

if the trait measured does not have at least an ordinal scale, then the use

of many common statistical procedures such as correlational analysis, analy-

sis of variance, and the like is suspect.

The second implication involves the broad domain of scores. The most

common score index utilized in the behavioral sciences is the total or

summative score. Such a score is usually arrived at by summing an indivi-

dual's correct responses to a set of test items. The use of summative

scores can be questioned in its own right. For example, what is the justi-

fication for using a linear combination relation as the most appropriate

algebraic function relating item scores to trait scores? Also, what is the

justification for decomposing performance of a trait into a series of inde-

pendent sub traits such that each item measures exactly a unit level of the

corresponding subtrait? However, summative scores are also closely related

to assumptions of trait and item orders, for if a trait or related items are

linearly ordered, then one does net need to use summative socres to charac-

terize performance since each item in the order represents a unique level
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of performance. Two individuals who attain a score of 8 on a linearly

ordered set of items attain their scores not necessarily because they an-

swered 8 items correctly, but rather because the highest level item they

answered correctly was valued at 8. Further, both individuals have at-

tained identical item response patterns, since for linearly ordered items

a given score engenders one and only one response pattern.

Summative scores, which are utilized by most accepted behavioral

science measurement models, violate the accepted definition of measurement.

Most models define measurement as the assignment of numbers to events (in

keeping with the linear order assumption). A summative score violates this

definition since a summative score involves the assignment of a number to

a class of events.

But more than violating an accepted definition, summative scores cloud

the meaning of performance on a trait. Consider two individuals each of

whom attains a summative score of 7 on a non-linearly ordered set of test

items. Although the scores imply that the individuals are equivalent in

performance, such is not necessarily the case, for the individuals may have

answered correctly non-overlapping sets of items. Summative scores general:-

ly result in the same number being assigned to different sets of events.

But because a linear order in the trait measured is assumed (and in spite

of the use of summative scores) we are conditioned to thinking that higher

scores indicate higher levels of performance. However, in cases where a

linear order among the events measured does not exist, a high score is

likely to be indicative of a greater breadth of knowledge.inthe trait

rather than indicative of any absolute level of knowledge in the trait.

6



Consequently, if we arc to extricate ourselves from the problems engendered

by summative Acores and lf.we arc to know whether a score indicates breadth

or level of the trait, then we must investigate, not: assume, the orders of

the traits we measure.

Latent Trait Continuum Assumption

A second assumption made in measurement models is that of an under-

lying trait continuum (Culliksen, 1950; Lord & Novick, 1968; Magnussen,

1967; Rasch, 1960). In most measurement we are concerned with the under-

lying trait which determines performance on an event or a set of events.

Most models assume that individuals distribute themselves on a single,

underlying continuum with respect to possession of the trait. The finite

set of events measuring performance on a trait is assumed to be a sample

from the unl.verse of events which could be used tt measure the continuum.

Further, it is generally assumed that a monotonic relationship exists b

tween degree of trait possession and score on the sample of items. These

assumptions result in the use of continuous probability distributions,

most frequently the normal, to describe the distribution of individuals

with respect to the trait continuum.

We define our traits in terms such as fourth-grade arithmetic achieve-

ment, creativity, spatial reasoning, attitude toward school, and so on. To

measure, we typically select a sample of items from the universe (usually

with some intent to include items near the .5 level of difficulty) and ad-

minister our instrument. Individuals who attain high scores (almost always

summative in nature) are identified as possessing higher levels of achieve-

ment, spacial reasoning, and the like. The trait continuum assumption

frequently leads us away from asking such legitimate questions as: (1) Do
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more items answered correctly truly indicate a higher level of performance

or does discussion of level of pOrformance depend upon more precise informa-

tion about inter-item relationships? ( ) Can we define the universe of

items clearly enough to justify inferences to a single underlying trait con-

tinuum? (3) Ts it appropriate to characterize general traits such as

creativity and attitude toward school as comprising a single continuum or

might there be a number of continua making up these traits?

n sum, the linear order and underlying latent trait continuum assump-

tions have. lead users of accepted measurement models away from consideration

of inter-event (or inter-item) relationships. Much information about traits

is thereby ignored. It is in consideration of these inter-event relationships,

be they linear ordered or not, that the richness for behavioral science

model building lies. It is through investigation of such relationships, or

the lack of them, that measurement models can.be most theory-generative.

Tree Theory

Tree theory is a theory-generative measurement model which makes few

assupmtions about the traits measured. In fact, one of the pripe aims of

tree theory is to provide a framework to enable one to test assumptions of

linear Order, unidimensionality, the appropriateness of summative scores,

and the like. .

However, tree theory is capable of more than simply testing assumptions

made by other measurement models. With tree theory one can also investigate

the accuracy of any a priori postulated order among a set of events used

to describe q trait. Further, in those cases where no a priori order

among the eevents is hypothesized, tree theory permits the generation of
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the specific logical relationships which exist among the events. It is

through the investigation of these inter-event relationships that theories

about traits can be constructed and tested. The power of tree theory lies

in its few assumptions and in its ability to generate and test logical

relationships among the events utilized to represent a trait.

To specify the exact logical relationships which exist among a set

of events, tree theory utilizes Boolean algebra. Item response patterns

are viewed as a form of a free Boolean algebra, with the number of genera-

tors in the algebra being equal to the number of items or events studied.

The union of the observed item response patterns, as represented in Boolean

form, defines the tree for those events or items (i.e., the set of logical

relationships among the events or items manifested in the item response

patterns).

Specific item parameters, as well as the goodness-of-fit of a speci-

fic tree to a set of items, can be determined using a statistical model

based upon the multinomial distribution for the item response patterns.

The following two sections of the paper describe the Boolean algebraic

framework and the rationale for the statistical model used to estimate

item parameters and test the goodness-of-fit of specific trees.

Algebraic Procedures

Tree theory is used to determine the logical relationships among

empirical events. This task is accomplished through an examination of

the item response patterns obtained from a test composed of items mea-

suring the empirical events. Another way to view this process is to

state that tree theory reveals the logical relationships among items.

9



At present, in order to employ tree theory, test items must be dichot-

omously scored (e.g., a score of "1" is given if an individual "passes" an

item and a score of "0" is given if the individuals "fails" an item). Given

that one has items which can be dichotomously scored, he can administer the

items to a sample of subjects to obtain a set or item response patterns.

Every set of distinct item response patterns will determine a unique set

of relationships among the items. In fact, there is a one-to-one correspond-

ence between sets of inter-item relationships and sets of distinct response

patterns (Bart, 1970).

For a set of items, all of the sets of inter-item logical relation-

ships form a system isomorphic to that of a free Boolean algebra. Any

set of logical relationships among a set of items is a'tree. Further if one

. considers the set of distinct response patterns for a set of items, all

subsets of that complete set of response patterns also form a system isomorphic

to that of a free Boolean algebra. Thus, both the system of sets of logi-

cal inter-item relationships and the system of sets of distinct item res-

ponse patterns have a free Boolean algebraic structure.

In comparing free Boolean algebras with item response pattern sets

one can note correspondences between elements in one set and elements in

the other set. The dichotomously scored test items have the same pro-

perties as generators in a free Boolean algebra. As an item can have

two scores, "0" for an incorrect response and "1" for a correct response,

so a generator has two states, a negated state and a non-negated state.

Thus, for a score of "1" on item i there corresponds the Boolean algebra

generator P. and for a score of "0" on item i there corresponds the gen-

erator -P
i

.
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Each item response pattern possible for a set of items has a counter-

part element in a free Boolean algebra called an "atom"; any non-null

element a in a free Boolean algebra is an atom if, for any element 0 in

the same algebra, either a c 0 or a.0 = 0 where "." refers to intersection.

Also, as an Item response pattern is a function (co-occurrence) of indi-

vidual item scores, so an atom is a function (intersection) of values of

individual generators. For example, the item response pattern (0,1,1) cor-

responds to the atom -P1.P2.P3. Further, as one can generate a set of dis-

tinct item response patterns which will determine a tree for the items, so

one can generate any element in a free Boolean algebra by forming the union

of a certain set of atoms. Thus, because of the isomorphic relationship,

many parallels can be cited between response pattern spaces and free Boo-

lean algebras.

To exemplify how the method of tree theory is used, consider the

following situation. Let 1, 2, and 3 be three items testing numerical

reasoning. Assume that the three items were administered to a sample of

subjects and certain distinct response patterns were obtained. Let the

obtained response patterns and corresponding Boolean atoms be those in-

dicated in Table 1.

Insert Table 1 about here

To determine the best fitting tree for the items one forms the union

of the obtained Boolean atoms, e.g., -P1.-P2.-P3v P1.-P2.-P3v -P3.-P2.P3v

P
1.

-P
2
.P

3
v P

1
.P .P

3
P
2

P
1
.P
3
where "+ " refers to "implies", "v" refers

to "either ... or", and "." refers to "and." Therefore, the tree for

items 1, 2, and 3 indicates that success on item 2 implies success on

item 1 and success on item 3. To simplity the union of the obtained atoms



as in the example cited to form P, various algebraic rules proper
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to Boolean algebra as discussed by Birkhoff and racLane (1965) are to be

employed. Tn this example, the tree indicated implicative links among the

items which could give much information and direction to a teacher or re-

searchere.g., the behaviors required for the resolution of item 1 and

item 3 must be mastered if behaviors required for the resolution of item

2 are to be mastered. Trees may be represented graphically with branch-

like diagrams called tree graphs. For example, P2 -q1.P3 is represented

graphically in Table 2. In Table 2, P
1
is represented as a prerequisite to

P2, P3 is represented as a prerequisite to P2, and P1 is represented as

Insert Table 2 about here

I ogically independent of P3. Thus, success on item 1 is indicated as a pre-

requisite to success on item 2, success on item 3 is indicated as a prerequi-

site to success on item 2, and a score on item 1 is indicated as independent

of a score on item 3.

For a large number of items the number of trees is substantial. For

n items there are 2
n

possible item response patterns. Each subset of

those 2
n
possible item response patterns determines a tree; therefore,

there are 2 2n trees possible for a set of n items since there are 22n sub-

sets of possible item response patterns. Due to the fact that the number

of trees can be gigantic given a large number of items (more than 10),

effort are underway to render the method of tree theory into computer

language form.
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In addition to the empirical tree which is the union of the atoms

corresponding to the obtained distinct response patterns for a set of

items, there are usually other tenable trees such that only response

patterns compatible with these trees are obtained. Other tenable trees

for a set of items can be determined by forming the union of the empirical

tree and some set of unobtained atoms. Thus, the empirical tree is always

included in any tenable tree for a set of items. A response, pattern is

compatible with a tree if the atom corresponding to the response pattern

is included in the tree. Such a pattern is called a confirmatory response

pattern. For example, if one considers Table 1, response pattern (0,0,0)

is confirmatory with respect to the tree P .P for the corresponding
2 1 3

atom -P1.-P2.-P3 is included in the tree P2 4131.P3. A response pattern

is incompatible with a tree if the atom corresponding to the response pat-

tern is not included in the tree. Such a pattern is called an infirmatory

response pattern. For example, in considering Table 1 response pattern

(1s1:0) is infirmatory with respect to the tree P
2

-43
1
.P

3
for the cor-

responding atom P1.P2.-P3 is not included in the tree P2 4P1.P3. A tree

is confirmed if only confirmatory resp3nse patterns are obtained from

the appropriate adiminstration of a set of items of a trait under con-

sideration. With the method of tree theory, a researcher could either

test specific hypothesized relationships among test items or determine

a posteriori specific relationships among test items.

Statistical Procedures

A tree can be generated from either the Boolean algebraic steps

just described or from an a priori notion regarding the logical relation-

ships among a set of test items. In either case, one frequently wishes

3
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to go beyond the specification of a tree to estimate parameters of parti-

cular items in the tree and to test the fit of the estimated parameters

to the observed data. This section of the paper presents the simplest,

measurement model applicable to estimating the conditional difficulties

of items in a tree. Those readers who seek a rigorous derivation of

the estimation procedures are referred to Airasian (1970a, 1970b, in press)

and Airasian and Bart (1970).

The statistical procedures are based upon two postulites. The first

states that, since tree theory is concerned with the discovery of inter-item

relationships, response patterns on dichotomously scored items must be uti-

lized as the basic data points. Summative scores are inappropriate indices

for studying the logical relationships between items for the reasons cited in

the first section of the paper. The second postulate recognizes that the trees

studied in a given context are composed of a finite number of test items.

The number of resulting response patterns is therefore also finite. As a

consequence, a discrete probability distribution is used to describe the

distribution of response patterns.

The procedures for estimating conditional item difficulties and con-

commitant standard errors are based upon two conditions. First, a greater

number of confirmatory response patterns than items to be estimated must

exist. Second, at least one relationship of'implication between the items

must be manifested. With these conditions satisfied the general argument

for the estimation of the conditional item difficulties and standard errors

proceeds as follows.

n
For n items which are dichotomously scored there exist 2 different
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patterns of item responses. However, the tree for a set of items will

define one or a number of implication relationships between items which

will preclude the occurrence of certain response patterns. Thus if items

A and B represent a two-item linearly ordered tree with item B implying

item A, the response pattern in which item B is correct but itemA is

incorrect should not occur.

The Boolean procedures define a tree based upon consideration of each

individual's response pattern to the items. Consequently an implication

relationship will be defined only when all the data conform to the rela-

tionship. One errant response pattern issufficient to rule out what ap-

pears, in all other patterns, to be a hypothesized relationship between

two items. In one sense the rigidity of the algebraic procedures is desir-

albe because a limitation of the statistical model is that it is deterministic,

that is, it cahandle only confirmatory response patterns for a given tree.

Although the techniques will not be elaborated here, it is possible to handle

errant response patterns by Guttman reproducibility procedures (Guttman, 1950;

Green, 1956)2by specifying a priori tolerance levels for error, or by ignoring

those patterns which can be explained on the basis of guessing probabilities.

The distribution of allowable response patterns for a tree can be

represented by the multinomial distribution. This clistribution represents

the generalization of the binomial to cases in which there are greater than

two mutually exclusive and exhaustive response categories. The distribu-

tion function is

/V fTh nl n2 On
is = n11 n2I . . . n I . . .n

J. 2 j

1

15
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where N = total number of subjects with confirmatory response patterns,

n. = number of subjects manifesting the j-th response pattern,

P = probability of the j-th response pattern.

In general, the parameters of interest will be the conditional difficulties

for the items in the tree. In the two item linear order example cited above,

the parameters would be P(A) and P(13 /A). The procedures permit the estimation

of more unusual conditional difficulties however, such as the probability of

one item being correct given an incorrect response to a prerequisite item.

The nature of the item parameters is defined by the nature oC the logical

relationships between the items in the tree.

Given a tree, the inter-item logical relationships define the response

patterns acceptable for that tree. Again referring to the two item linear

order, the implicative relationship between A, the lower order item, and B, the

higher order item, permit only three of the possible four response patterns.

Using a 1 to represent a correct item response and a 0 to represent an in-

correct item response (with the first number representing performance on

item A), the three allowable response patterns are (00), (10), and (11).

Each of these response patterns can in turn be defined in terms of the item'

parameters to be estimated. Thus, the probability of the pattern (10) is

[P(A) (1-P(B/A))].

After expressing the probability of each allowable response pattern for .a

given tree in terms of the parameters, maximum likelihood estimation procedures .

can be utilized to derive the parameter estimates. Variance estimates of the

conditional difficulty estimates can be found by taking the second derivative

of the likelihood function of the response, pattern probabilities with respect

16
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to each parameter and finding the reciprocal of the negative expectation of

the derivative.. Standard errors can be calcultated from the variance estimates

(Airasian, 1970a, 1970b).

Thejloolean algebraic procedures indicate where logical relationships
C.

exist among a set of test items. The conditional difficulty estimates

provide more precise information about these relationships by indicating

the difficulty of an item given performance on all related items. The

estimated standard error for each conditional item difficulty gives an

indication of the confidence limits of the estimate.

Under certain conditions it is possible to test the fit of the esti-

mated pattern probabilities to the observed pattern probabilities. Such

a test indicates the goodness-of-fit of the estimates to the observed

data. The condition required to perform such a test is that at least one

degree of freedom for the test remain after the estimation of the item

parameters. Consider first a linearly ordered tree in which, given two

items, one implies the other. For such tree it can be deomnstrated that

there exists one more allowable response pattern than items in the order.

Thus, if each item parameter is estimated, no degrees of freedom remain

to perform the significance test. The fit of a linearly ordered tree is

therefore deterministic. If, however, one wishes to test the hypothesis

that one or more of the item parameters will have a given value, degrees

of freedom which arc not used in the estimation of these parameters are

available for the significance test.

For other, non-linear trees, sufficient degrees of freedom will re-

main after the estimation to permit the use of the likelihood ratio sta-

tistic. This statistic (A) is given by the ratio of the maximum of the
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likelihood in the hypothesized parameter space W to the maximum of the

likelihood in the unrestricted parameter space R. Where L(w) is the maxi-

mum of the likelihood in the restricted space and L(R) is the maximum of

the likelihood in the unrestricted parameter space, the likelihood ratio

statistic is given by

L(6)
X =

L(2)

For large samples, the critical points of the A distribution can be ap-

proximated by the Chi-Square distribution, where

X 2 = -2 log X .

The statistical procedures permit estimation of item parameters

which take into account the logical relationships between items identi-

fied by the Boolean procedures. Confidence limits for these estimates

can be derived as a function of the estimated standard errors. Further,

a test of the fit of the estimated parameters to the observed data can be

performed, given that there exist sufficient degrees of freedom. Such

procedures provide more precise information about the relationships between

a set of related test items. The estimates can be utilized as a basis for

revision of elaboration of given trees (Airasian, in press).

Applications

Applications of tree theory will be cited in two areas, evaluation

and developmental psychology. One primary use of tree theory is in

placement and formative student evaluation. In placement evaluation (Ma-

daus & Airasian, 1970) one strives to obtain an indication of the extent

to which students entering a course have mastered the prerequisites for

18
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the course. In formative evaluation, the aim is to identify learning

weaknesses and the relationship between these weaknesses prior to grading

(Airas:ian, 1968).

To use the performance on particulnr prerequisite skills and abilities

as a basis for placing a student at a particular point in instruction,

one needs to know the relationships between performance on the prerequi-

sites and performance on the course material. It makes little sense to

deprive a student of admittance to a course or to attempt to place him

somewhere in that course based upon his entry behaviors un:Lcss one can

define the nature of the specific relationships between entering repertory

and the course objectives. For such purposes, summative scores are inade-

quate. Tree theory, however, can define the set of logical relitionships

between prerequisites and course performance. The conditional difficulty

estimates can provide an index of the likelihood of success on course

related tasks given mastery or lack of mastery on prerequisite tasks. Use

of tree theory can result in more intelligent and accurate student place-

ment.

Formative evaluation requires that students be afforded specific in-

formation about what they have learned and what they have yet to learn at

frequent stages of instruction. The aim is to permit correction of learn-

ing weaknesses prior to grading or the introduction of subsequent material.

Basing a formative test on a tree for a unit can provide students and tea-

chers with an exact indication of what each student has mastered. Further,

the types of relationships between the elements to be learned afford an

efficient strategy for sequencing correction of unmastered material.

19
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in developmental psychology the determination of orders, patterns, and

sequences for cognitive behaviors is an important objective. For example,

in Piagetian cognitive stage theory there is the contention that many

cognitive processes comply to a linear hierarchy. Tree theory analysis

could be used not only to test hypothesized trees (e.g., a linear hierar

chy) for various cognitive behaviors but also to determine exacting logi

cal relationships among the cognitive behaviors that will allow revision

of developmental psychological theories. In such areas as developmental

psychology the discovery potentialities of tree theory should be richly

manifested.

C.
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Table 1

Distinct Item Response Patterns and their

Corresponding Atoms obtained for Items ], 2 and 3.
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3)

4)
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